Optimization approaches to quadrature: New characterizations of Gaussian quadrature on the line and quadrature with few nodes on plane algebraic curves, on the plane and in higher dimensions

نویسندگان

  • Cordian Riener
  • Markus Schweighofer
چکیده

Let d and k be positive integers. Let μ be a positive Borel measure on R2 possessing moments up to degree 2d − 1. If the support of μ is contained in an algebraic curve of degree k, then we show that there exists a quadrature rule for μ with at most dk many nodes all placed on the curve (and positive weights) that is exact on all polynomials of degree at most 2d − 1. This generalizes both Gauss and (the odd degree case of) Szegő quadrature where the curve is a line and a circle, respectively, to arbitrary plane algebraic curves. We use this result to show that, without any hypothesis on the support of μ, there is always a cubature rule for μ with at most 3 2 d(d− 1) + 1 many nodes. In both results, we show that the quadrature or cubature rule can be chosen such that its value on a certain positive definite form of degree 2d is minimized. We characterize the unique Gaussian quadrature rule on the line as the one that minimizes this value or several other values as for example the maximum distance of a node to the origin. The tools we develop should prove useful for obtaining similar results in higher-dimensional cases although at the present stage we can present only partial results in that direction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Buckling Analyses of Rectangular Plates Composed of Functionally Graded Materials by the New Version of DQ Method Subjected to Non-Uniform Distributed In-Plane Loading

In this paper, the new version of differential quadrature method (DQM), for calculation of the buckling coefficient of rectangular plates is considered. At first the differential equations governing plates have been calculated. Later based on the new version of differential quadrature method, the existing derivatives in equation are converted to the amounts of function in the grid points inside...

متن کامل

The new version of Differential Quadrature Buckling Analyses of FGM Rectangular Plates Under Non-Uniform Distributed In-Plane Loading

In this paper the buckling coefficient of FGM rectangular plates calculated by the new version of differential quadrature method (DQM). At the first the governing differential equation for plate has been calculated and then according to the new version of differential quadrature method (DQM) the existence derivatives in equation , convert to the amounts of function in the grid points inside of ...

متن کامل

Small Scale Effect on the Vibration of Orthotropic Plates Embedded in an Elastic Medium and Under Biaxial In-plane Pre-load Via Nonlocal Elasticity Theory

In this study, the free vibration behavior of orthotropic rectangular graphene sheet embedded in an elastic medium under biaxial pre-load is studied. Using the nonlocal elasticity theory, the governing equation is derived for single-layered graphene sheets (SLGS). Differential quadrature method (DQM) has been used to solve the governing equations for various boundary conditions. To verify the a...

متن کامل

Effect of Winkler Foundation on Radially Symmetric Vibrations of Bi-Directional FGM Non-Uniform Mindlin’s Circular Plate Subjected to In-Plane Peripheral Loading

An analysis has been presented of the effect of elastic foundation and uniform in-plane peripheral loading on the natural frequencies and mode shapes of circular plates of varying thickness exhibiting bi-directional functionally graded characteristics, on the basis of first order shear deformation theory. The material properties of the plate are varying following a power-law in both the radial ...

متن کامل

In-plane Band Gaps in a Periodic Plate with Piezoelectric Patches

A plate periodically bonded with piezoelectric patches on its surfaces is considered. The differential quadrature element method is used to solve the wave motion equation for the two-dimensional periodic structure. The method is very simple and easy to implement. Based on the method, band structures for in-plane wave propagating in the periodic piezoelectric plate are studied, from which the fr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Complexity

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2018